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We describe the advantages and disadvantages of numerical methods when Bohmian trajectory grids are
used for numerical simulations of quantum dynamics. We focus on the crucial noncrossing property of Bohmian
trajectories, which, numerically, must be given careful attention. Failure to do so causes instabilities or leads
to false simulations.

1. Introduction

Bohmian Mechanics. Bohmian mechanics1 is a mecha-
nical theory for the motion of particles. We describe the
theory in units of massm ) p ) 1. Given the Schro¨dinger
wave function ψt of an N-particle system, the trajectories
of the N particlesqk(qk

0,ψ0; t) ∈ R3, 1 e k e N, are solu-
tions of

with qk(t ) 0) ) qk
0 as the initial conditions andψ* denoting

the complex conjugate ofψ, so thatψ*ψ ) |ψ|2. [Note: By
interpretingψ*ψ as an inner product, the generalization to spin
wave functions is straightforward.] We denote the configuration
point x ) (x1, ...,xN) ∈ R3N, ∇x ) (∇x1, ...,∇xN) where∇xk is the
gradient with respect toxk ∈ R3. ψt is the solution of the
Schrödinger equation,

with the initial conditionψt)0(x) ) ψt)0(x1, ..., xN) ) ψ0(x1,
..., xN). Using configuration space language, the Bohmian
trajectory of anN particle system is an integral curveq(t) ∈
R3N of the following velocity field on configuration space:

i.e.,

Under general conditions, one has the global existence
and uniqueness of Bohmian trajectories; i.e., the integral curves

do not run into nodes of the wave functions and they can-
not cross.2 From this point forward, we shall only discuss
the trajectories as integral curves in configuration space.
Note that for one particle, the configuration space is equal to
physical space; for more than one particle, this is not the
case.

The empirical import of Bohmian mechanics results from
equivariance of the|ψ|2 measure: One readily sees that, by
virtue of eq 3, the continuity equation for the Bohmian flow on
configuration space is identically fulfilled by the density,Ft )
|ψt|2, then known as the quantum flux equation,

This means that, if the configuration of particlesq0 )
(q1

0, ..., qN
0) is distributed according toF0 ) |ψ0(x1, ..., xN)|2

at time t ) 0, then the configurationq(t) ) (q1(q1
0,ψ0; t), ...,

qN(qN
0,ψ0; t)) is distributed according toFt ) |ψt(x1, ...,

xN)|2 at any time t. Because of this observation, Boh-
mian mechanics agrees with all predictions made by ortho-
dox quantum mechanics whenever the latter are
unambiguous.3,4

Hydrodynamic Formulation of Bohmian Mechanics.Write
ψ in the Euler form:

where R and S are given by real-valued functions. Equa-
tion 3, together with eq 2, separated in their real and
complex parts, gives the following set of differential
equations:
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This set of equations can be examined along the Bohmian
trajectoryq(q0, ψ0; t). We then obtain

Numerical Integration. Numerically, this set of equations
(eqs 5-7) can readily be integrated5 and offers some advantages
over standard techniques for solving the Schro¨dinger equation
(eq 2) numerically. The basic idea, according to Wyatt,5 is that
the Bohmian configuration space trajectories define a co-moving
grid (Bohmian grid) in configuration space, which is best
adapted for the computation ofψ. If initially the grid points (n
points in R3N) are |ψ0|2 distributed, they will remain|ψt|2
distributed for all timest. Thus, the co-moving grid spreads
dynamically, according to the spreading of|ψt|2 and the grid
points will primarily remain in regions of space where|ψt|2 is
large while avoiding regions of nodes or tails of|ψt|2, which
are numerically problematic. Therefore, Wyatt’s idea is this:
Integrate the eqs 5-7 simultaneously,i.e., get the best-adapted
moving grid along withψ, instead of integrating the Schro¨dinger
equation on some fixed or otherwise determined grid. This is
why the algorithm is particularly interesting for long-time
simulations, which usually demand huge computational effort
on fixed grids. Therefore, if one aims at the relevant parts of
the wave function (where probabilities are high), one can use a
fixed numbern of |ψ|2 distributed Bohmian grid points inR3N,
so that the Bohmian grid simulation scales with the numberN
of particles,5 while conventional grid methods mostly scale
exponentially withN. Section 3 has greater discussion on how
to distributen grid points in a|ψ|2 manner.

To perform the numerical integration of the set of differential
equations given as eqs 5-7, we follow the straightforward
method described by Wyatt.5 The only crucial part in this
methodology is computing the derivatives involved in the set
of differential equations. Several techniques are known, and
Wyatt’s work5 gives a comprehensive overview. Among them,
one techniquescalled least-squares fittingsis commonly used.
In this letter, we argue that this method is inappropriate for
integrating eqs 5-7 for general initial conditions and potentials.
Bad situations occur whenever Bohmian trajectories move
toward each other, because least-squares fitting will allow
crossings of the simulated trajectories that are not allowed for
Bohmian trajectories. When a crossing is encountered in a
numerical simulation, further computation can be aborted,
because this numerical wave function would differ immensely
from the solution of the Schro¨dinger equation (eq 2). This will
happen generically, i.e., for non-Gaussian wave functions. To
illustrate our argument, we shall present a typical numerical
example in one dimension with one particle. Therefore, in what
follows, N ) 1 and then trajectories that we shall consider
(making up the grid) are the possible trajectories of this one
particle only.

2. Least-Squares Fitting versus Polynomial Fitting

To compute the derivatives encountered in eqs 5-7, we only
consider two different types of fitting: the least-squares fitting
and the polynomial fitting. Most other fitting algorithms are
descendants of one or the other. Both provide an algorithm for

finding a polynomial (or more general an element of am
dimensional vector space of functions; the coefficients of the
design matrixX determine which basis functions are used) of
degree, here (m - 1), which is, in some sense to be specified,
close to a given functionf: R f R, known only on a set of
data points, (xi, f(xi))1eien, for pairwise distinctxi,1eien. The
derivative can then be computed from the fitting polynomial
by algebraic means. For the further discussion, let

Using this notation, the problem of finding a fitting polynomial
to f, on the basis ofn pairwise distinct data points of the graph
of f, reduces to finding the coefficients of the vectora that obeys
the equation

such that the error termδ is, in some sense, small. Here, the
center dot (‚) denotes matrix multiplication. The fitting poly-
nomial is then given by

Polynomial Fitting. For the case ofn ) m, we can choose
the error termδ to be identical zero, becauseX is an invertible
square matrix anda ) X-1‚y can be computed in a straight-
forward manner.

Least-Square Fitting.For arbitraryn g m, there is no unique
solution anymore and one needs a new criterion to find a unique
vectora. Therefore, the algorithm of least-squares fitting uses
the minimum value of the accumulated error

wherew : R f R specifies a weight dependent on the distance
between theith data pointxi and some pointx where the fitting
polynomial shall be evaluated. The vectora can now be
determined by minimizing∆ as a function ofa, by solving

Note that, form ) n and any nonzero and positive weightw,
the algorithm of least-squares fitting produces the samea as
the polynomial fitting would, because, for thea determined by
polynomial fitting, the non-negative function∆(a) is zero and,
thus,a naturally minimizes the error term.

Why Least-Squares Fitting is Inappropriate for Bohmian
Grids. The algorithm of least-squares fitting is well-known for
its tendency to stabilize numerical simulations by averaging out
numerical errors. However, this averaging makes it difficult to
keep the grid points from crossing each other. To understand
what happens during a numerical simulation, recall the form of
the equations of motion (eqs 5-7), which must be integrated
step by step. The change in time of the phaseS is determined
by three terms in eq 7. The first two terms form the classical
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Lagrangian and are dependent on the current velocities of the
grid points and on the potentialV. The third term is the so-
called quantum potential and is dependent only onR and its
second derivative. This quantum potential is what prevents
Bohmian trajectories from crossing each other. Therefore, it
requires special attention during the numerical integration. Now
imagine initial conditions such that two grid points approach
each other. An increase of the density of the grid points in a
region where the two grid points move toward each other will
cause a small bump inR. By “small bump”, we mean a bump
of the wave function shape on a microscopic scale, i.e., a scale
defined by few grid points. Such a small bump ofR may
have large derivatives changing the quantum potential in
eq 7. Thus, it is absolutely vital for a numerical simula-
tion to implement a fitting algorithm that reconstructs not only
R, respectivelyS, in an accurate way but also its second
derivative. The tendency of the least-squares fitting algorithm
is to average out those small bumps inR, respectivelyS. Hence,
the simulation is blind to recognize grid points moving toward
each other and, hence, does not prevent a crossing of these
trajectories.

Note that, because the averaging occurs on a microscopic
scale, situations in which grid points move only very slowly or
do generically not move toward each other are often numerically
doable with least-squares fitting. [For example, a free Gaussian
wave packet or one approaching a potential, creating only soft
reflections.] On the other hand, numerical simulations with least-
squares fitting in general situations (such as the one just
discussed) are bound to break down as soon as two grid points
get too close to each other.

Why Polynomial Fitting is More Appropriate for Bohmian
Grids. We previously stressed that small bumps may increase
numerical instability exponentially. A good numerical method

must take note of the small bumps and prevent their increase.
Such a numerical method is provided by polynomial fitting,
because, there, the polynomials go through all grid points.
Therefore, polynomial fitting recognizes the bumps ofR and/
or Sand, hence, the resulting quantum potential recognizes the
approaching grid points. Now recall the physics of the Bohmian
evolution, which, as we stressed in the introduction, prevents
the trajectories from crossing each other. Therefore, we expect
that this method is self-correcting and, hence, stabilizing.

The Boundary Problem. It must be remarked that polyno-
mial fitting creates a more severe problem at the boundary of
the supporting grid than does least-squares fitting. This problem
is of the conceptual type, because, at the boundary, there is a
generic lack of knowledge of how the derivatives ofR or S
behave (see Figure 1).

We describe briefly how this conceptual problem can cause
severe numerical instability. For this, suppose that only the last
grid point in the upper left plot of Figure 1 is lifted a little bit
upward by, e.g., some numerical error. The resulting quantum
potential then will cause the last grid point to move toward the
second-to-last one. This increases the density of grid points and,
thus, again, increasesR in the next step such that this effect is
self-amplifying (in fact, growing superexponentially) and will
effect the entire wave function quickly.

At the boundary, the good property of polynomial fittings
namely, to recognize all small bumpssworks against Bohmian
grids techniques. In contrast, least-squares fitting simply aver-
ages these small numerical errors out (see the lower right plot
in Figure 1). However, the conceptual boundary problem
remains and will eventually manifest also with least-squares
fitting.

The Numerical Simulation. To demonstrate our argument,
we shall now give a numerical example for one particle in one

Figure 1. Fitting of a sixth-degree polynomial and its second derivative near the boundary. In the upper left-hand panel, the function to fit smoothly
decays; both least-squares fitting and polynomial fitting give identical fitting polynomials mimicking this decay. In the upper right-hand panel,
polynomial fitting was used while the function value at the fourth grid point was shifted upward by 10-4 (not visible in plot) to simulate a numerical
error, to examine how sensitive polynomial fitting reacts to such an error. In the lower left-hand panel, all values at the grid points were shifted by
an individual random amount of the order of 10-3 and polynomial fitting was used. In the lower right-hand panel, all values at the grid points were
shifted by the same random numbers as those in the lower left-hand panel, while the additional grid points were also shifted by individual random
amounts of the order of 10-3 and least-squares fitting was used. By comparison with the plot shown in the upper left-hand panel, one observes the
robustness of least-squares fitting to such numerical errors at the boundary.
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dimension. We remark, as mentioned previously, that Gaussian
wave packets are unfit for probing the quality of the numerical
simulations. Therefore, we take, as initial conditions, two
superposed free Gaussian wave packets with a small displace-
ment, together with a velocity field identically to zero, and focus
the attention on the region where their tails meet, i.e., where
the Bohmian trajectories will move toward each other, according
to the spreading of the wave packets (see Figure 2). The physical
units given in the figures and the following discussion refer to
a wave packet on a length scale of 1 Å) 10-10 m and a
Bohmian particle with the mass of an electron.

The numerical simulation is implemented as described in the
work by Wyatt5 with minor changes. It is written in MATLAB,
using IEEE Standard 754 double precision. To ease the boundary
problem, we use a very strong least-squares fitting at the
boundary. Note that this only eases the boundary problem and
is by no means a proper cure. Between the boundaries, however,
the number of data points for the fitting algorithm and the degree
of the fitting polynomial can be chosen in each run. In this way,
it is possible to have either polynomial fitting or least-squares
fitting between the boundaries. The simulation is run twice: first

with the polynomial fitting, and then with the least-squares
fitting algorithm between the boundaries.

We take seven basis functions for the fitting polynomial in
both cases. Note that the choice should at least be greater or
equal to 4 to have enough information about the third derivative
of the fitting polynomial. In the first run, with polynomial fitting,
the number of grid points used for fitting is seven and in the
second run, for the least-squares fitting, we choose nine, which
induces a mild least-squares behavior. For the numerical
integration, we have used a time step of 10-2 fs with the total
number of 51 grid points supporting the initial wave function.
The source code is available in our previous work.6

Results.The first run with polynomial fitting yields accurate
results and does not allow for trajectory crossing way beyond
5000 integration steps, i.e., 50 fs (see Figures 3 and 4). The
second run with least-squares fitting reports a crossing of
trajectories already after 430 integration steps, i.e., 4.3 fs, and
aborts (see Figures 5 and 6). The numerical instability can
already be observed earlier (see the left-hand side of Figure 5).
An adjustment of the time step of the numerical integration does
not lead to better results in the second run. Of course, the

Figure 2. Initial wave function at time zero (left), and its velocity field after a very short timet (right).

Figure 3. Simulated|ψ|2, together with the velocity field at timest ) 3.8 fs andt ) 15 fs, using polynomial fitting between the boundaries. Panels
on the left-hand side show the center part of the wave function, where grid points move toward each other. Panels on the right-hand side show the
entire wave function at a later time. The grid points have all turned and move apart from each other. The kinks at(20 × 10-15 m in the velocity
field in the lower right plot are due to the transition from least-squares fitting at the boundary to polynomial fitting between the boundaries (see
“The Boundary Problem” subsection in section 2 of the text).
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crossing of the trajectories occurs exactly in the region where
the grid points move fastest toward each other. Referring to
the previous discussion, the small bumps inR created by the

increase of the grid point density in this region are not
recognized by the least-squares algorithm and, thus, are not
recognized by the numerical integration of eqs 5-7 (compare

Figure 4. Both plots belong to the simulation using polynomial fitting between the boundaries. The panel on the left-hand side indicates the
distanceL2 between the simulated wavefunction and the analytic solution of the Schro¨dinger equation (norm equal one), and the panel on the
right-hand side shows a plot of the trajectories of the grid points. Note how some trajectories initially move toward each other, decelerate, and
finally move apart.

Figure 5. The left-hand side is the same as the left-hand side of Figure 3 but using least-squares fitting throughout. The right-hand side shows the
same a short time later. Note, in the upper left plot, that the fitting polynomials of least-squares fitting fail to recognize the relatively big ordinate
change of the grid points. Therefore, the grid points that are moving toward each other are not decelerated by the quantum potential. Finally, after
t ) 4.3 fs, a crossing of the trajectory occurs.

Figure 6. Both plots belong to the simulation using least-squares fitting throughout. The left-hand panel shows the distanceL2 between the simulated
wavefunction and the analytic solution of the Schro¨dinger equation (norm equal one). The right-hand panel shows a plot of the trajectories of the
grid points. Note, by comparison with the right-hand side of Figure 4, the failure of least-squares fitting to recognize grid point trajectories moving
toward each other until they finally cross and the numerical simulation aborts.
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Figures 3 and 5). The approaching grid points are not decelerated
by the quantum potential and finally cross each other (see Figure
5), whereas in the first run, they begin to decelerate and turn to
the opposite direction during the time between 3 fs and 5 fs
(see Figure 3). To visualize how the two algorithms “see”R2

and the velocity field during numerical integration, these entities
have been plotted in Figures 3 and 5 by merging all fitting
polynomials in the neighborhood of every grid point together
(from halfway to the left neighboring grid point to halfway to
the right neighboring grid point). In Figure 5, one clearly
observes the failure of the least-squares fitting algorithm to
detect the small bumps inR.

Note that, in some special situations in which the time step
of the numerical integration is chosen to be large, polynomial
fitting may lead to trajectory crossing as well. This may happen
when the number of time steps in which the simulation must
decelerate two fast-approaching grid points is not sufficient. This
effect is entirely due to the fact that the numerical integration
uses discretized time. The choice of a smaller time step for the
simulation will always remedy the problem, as long as other
numerical errors do not accumulate too much.

The relevant measure of quality of the numerical simulation
is naturally theL2 distance between the simulated wavefunction
ReiS and the analytic solution of the Schro¨dinger equationψt,
i.e., (∫ dx|ψt(x) - R(x,t)eiS(x,t)|2)1/2, and is spelled out on the
left-hand side of Figures 4 and 6 for both runs.

3. Using |ψ0|2 as the Initial Distribution

As discussed in the introduction, if the grid points are distri-
buted according to|ψ0|2, they will remain so for all times. Doing
so will bring two advantages but at the price of a more-severe
conceptual boundary problem, as discussed in the last section.
The first advantage is that this Bohmian grid avoids regions
whereR is very small and, thus, where the computation of the
quantum potential becomes numerically tricky. The second
advantage is that now the system is overdetermined and the
actual density of grid points must coincide withR2 for all times.
This could be used as an on-the-fly check to determine whether
the grid points behave as Bohmian trajectories or not. If not,
the numerical integration does not give a good approximation
to the solution of eqs 5-7. It could also be considered to
stabilize the numerical simulation with a feedback mechanism
balancingR2 and the distribution of the particle positions, which
may correct numerical errors of one or the other on the fly.

One way of choosing|ψ0|2 distributed initial positions for
the grid pointsqj

0 for j ) 1, ...,n for some large numbern can
be described as follows. Chooseqj

0 in such a way that

This formula can be used to compute the grid points iteratively,
starting with some grid point near the maximum of|ψ(q,0)|2.
[This procedure of setting the initial grid points might run into
a node ofψ. In that case one should simply start with a slightly
shifted initial grid point.] Another way is to simulate|ψ0|2
distributed random variablesqj

0 via the commonly used tech-
niques. Here, however, one must be careful that the randomly
chosenqj

0 do not lie too close together. If they do, either some
of them must be deleted or the time step of the numerical
integration must be adjusted carefully. A rule of thumb is that
the distance of approaching grid points divided by their relative
velocity should be much smaller than the chosen time step.

4. Conclusion

The use of polynomial fitting instead of least-squares fitting
between the boundaries increases the stability of the numerical
integration immensely. This is due to the fact that polynomial
fitting, in contrary to least-squares fitting, does not average over
the microscopic structure of the function to fit and therefore
reconstructs the needed derivatives more accurately. The
discussed boundary problem is more severe for polynomial
fitting because of this fact. However, this problem is generic to
the numerical integration considered here and also occurs using
least-squares fitting but in a milder way. We suggest that the
smoothness of the decay of the wave function near the boundary
should be the guide for solving this problem, which requires a
detailed study. Furthermore, we have discussed that the Bohmian
grid is best-adapted to the problem of numerical integration of
eqs 5-7, because the grid points naturally avoid regions where
R becomes very small.
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